
ERDC MSRC/PET TR/00-01

Building Multidisciplinary Applications With MPI

by

Richard Weed

100199

 Work funded by the DoD High Performance Computing
 Modernization Program CEWES
 Major Shared Resource Center through

 Programming Environment andTraining (PET)

 Supported by Contract Number: DAHC94-96-C0002
 Nichols Research Corporation

Views, opinions and/or findings contained in this report are those of the author(s) and
should not be construed as an official Department of Defense Position, policy, or decision
unless so designated by other official documentation.

BUILDING MULTIDISCIPLINARY APPLICATIONS WITH MPI

Richard Weed �

Mississippi State University

November 2, 1999

1 INTRODUCTION

The requirements of higher accuracy and shorter simulation times in the modeling of coupled physical

processes such as uid-structure interaction, which requires the use of di�erent solution algorithms in di�erent

parts of the global solution domain have lead researchers in the government, industry, and academia to pursue

the development of \multidisciplinary applications." For the purposes of this report, a multidisciplinary

application is de�ned as any application composed of two or more computer codes which perform di�erent

types of simulations or functions that are linked by some mechanism to allow the exchange of required data.

For uid-structure interactions, this could be a �nite di�erence Computational Fluid Dynamics (CFD) code

that provides pressure time-histories to a �nite element structural dynamics code.

Prior to the introduction of parallel computing systems, coupling two di�erent codes required that the

developer either combine both codes into one code base and exchange data in memory or run the two codes

sequentially and exchange data by I/O from mass storage. Both approaches are inherently serial and can

be cumbersome to implement. However, accompanying the introduction of parallel computing hardware has

been the development of software libraries that allow data messages to be passed among processes. Therefore,

it is possible on parallel systems for the two codes to run concurrently as stand-alone processes and exchange

data via the underlying communications hardware of the system. This approach allows the developer to

minimize the amount of coding required to implement a coupled simulation and to run the simulations in

parallel. All that is required is extra code to de�ne the communication paths between di�erent applications

and to perform the actual sending and receiving of messages.

The purpose of this report is to describe a procedure for implementing multidisciplinary applications

using the standard message passing software found on most parallel systems, the Message Passing Interface

(MPI) library. In addition, it provides an introduction to a new suite of FORTRAN and C routines and

Unix C shell (csh) scripts named MDARUN that implements the ideas discussed in this report. A detailed

description of the software in the MDARUN package is given in an accompanying report [1]. The routines in

the MDARUN package perform the main tasks required to implement a multidisciplinary application using

MPI. The software is designed to reduce the e�ort required to implement an MPI-based multidisciplinary

application.

2 SUMMARY OF THE IMPLEMENTATION PROCEDURE

The following discussion assumes the reader has some familiarity with MPI. Consult one of the several

available references on MPI such as [2] if you have no prior experience with MPI programming. In addition,

�PET CSM Onsite Lead, ERDC MSRC, 1165 Porters Chapel Road, Vicksburg, MS 39180. E-mail: rweed@wes.hpc.mil

1

the ideas and procedures described in this report borrow heavily from the MPIRUN software package de-

veloped at NASA Ames Research Center by Fineberg [3]. The MPIRUN software package was used in prior

research by the author [4] and has been utilized by U.S. Army Engineer Research and Development Center

(ERDC) researchers developing a multidisciplinary application under the Department of Defense's Com-

mon High Performance Computing Software Initiative (CHSSI) program [5]. Unfortunately, the MPIRUN

software is no longer actively supported and has proven to be di�cult to maintain on the di�erent types

of parallel systems installed at the ERDC MSRC. Part of the motivation for this report and the software

described in [1] was a need for software to replace the MPIRUN package on ERDC MSRC machines that

can be easily maintained and implemented by individual developers.

One not so well-known feature of most (but, unfortunately, not all) MPI implementations is the ability

to start groups of di�erent (or the same) types of applications from a single loader command. The global

communicator created by MPI, MPI COMM WORLD, will contain all of the applications started irrespective

of the type or language of the di�erent applications. This is illustrated in Figure 1. If two instances of a.out

and two instances of b.out are started with the same loader command, the two a.out processes will have

ranks 0 and 1 in MPI COMM WORLD and the two b.out processes will have ranks 2 and 3. For the

simple example shown in Figure 1, communication between a.out and b.out can be accomplished using just

MPI COMM WORLD. However, for a more complex application involving hundreds of processes and several

di�erent application groups, keeping up with who is who inside MPI COMM WORLD can be cumbersome.

Therefore, the following procedure builds on the concept of groups of processes that is an integral part the

MPI standard.

A \group" is de�ned in this report as one or more processes of the same application type. The group

concept allows MPI COMM WORLD to be subdivided into smaller, more manageable units. Communica-

tion between these units is accomplished by building an \intercommunicator" between individual groups. In

MPI syntax, intracommunicators are used for communications between members of the same group. Inter-

communicators are used for communication between members of di�erent groups. Using the group concept,

building a multidisciplinary application can be boiled down to a three-step process. First, the application

groups are de�ned a priori and unique intracommunicators are built for each group. Next, an intercommu-

nicator is built on each member of individual groups that provides a path to the other application groups.

Finally, communication between groups is accomplished by using the intercommunicator in the appropriate

MPI send/receive routines. The details of each of these steps are presented in the following sections.

3 STEPS IN THE IMPLEMENTATION PROCESS

3.1 DEFINE THE APPLICATION GROUPS

De�nition of the application groups requires the following of information: the number of di�erent groups,

the number of processes in each group (i.e., the number of copies of the application started for each group),

and a unique index or tag that will be used to distinguish between di�erent types of applications. In the

MDARUN software described in [1], these data are de�ned either by the user hardwiring the appropriate

information into their codes or by reading the information from a user-de�ned data �le. In the MDARUN

software, the initialization routine (MDA Init) must be called by all members of MPI COMM WORLD. The

process with rank 0 in MPI COMM WORLD is responsible for reading the group de�nition data or setting

the hardwired values and then broadcasting that data to all processes in MPI COMM WORLD. With the

number of processes in each group and type of application in each group de�ned, arrays containing the global

rank in MPI COMM WORLD of the �rst process in each group (the group \leader") and a group number for

each process in MPI COMM WORLD are created. At this point, all the data needed by individual processes

to create a unique intracommunicator for each group will exist on all processes.

2

Figure 1: MPI COMM WORLD For Two Applications

Figure 2: MDARUN GROUP COMM For Two Application Groups

Figure 3: Intercommunicators Between Groups For Three Applications

3

The MDA Init routine was designed to require a minimum amount of user input. The following lines are a

sample data �le for MDA Init that de�nes four groups of two application types with each group containing

two processes:

num_app_types num_app_groups

2 4

nprocs/group group_app_type

2 1

2 2

2 1

2 2

This example demonstrates the exibility of the group concept. Di�erent groups of the same application can

work on di�erent test cases or data sets. Consult [1] for more information on using MDA Init and the data

shown above.

3.2 CREATE THE GROUP INTRACOMMUNICATOR

The next step is to call the appropriate MPI function to create a group intracommunicator. This new

communicator will only contain members of the same group. MPI provides two procedures for building

group intracommunicators. The �rst procedure uses the MPI group and communicator creation functions.

The steps in this procedure are given in the following pseudo-code:

On each process in MPI_COMM_WORLD,

First, call MPI_Comm_group generate a global group from

MPI_COMM_WORLD and then

For each group,

Define a list of the global ranks in MPI_COMM_WORLD

of processes that will belong to each group

Call MPI_Group_incl to create a new local group on

each process using the global group and the group

list

Call MPI_Comm_create to create a temporary communicator for

the each group

If the current process is a member of the current group, then

Set the group communicator equal to the temporary communicator

Otherwise,

Go to the next group

End If

End For

4

One problem with this approach is that all the processes must loop through the For loop in the above

pseudo-code in the same order. At �rst glance, it would appear that each process should only have to

execute one call to MPI Comm create. However, it is the author's experience that this procedure leads to

inconsistent de�nitions for the communicators for each group. All processes must call MPI Comm create for

all groups, even the groups which the current process is not a member. It is believed that this problem is a

function of how MPI stores and book-keeps new communicators.

In the MDARUN software, a much simpler and less dangerous procedure was adopted. First, each process

extracts its group number from the data de�ned in MDA Init. This group number is then used as the

\color" value in a call to the MPI Comm split function. MPI Comm split will create a new communicator

containing all processes in MPI COMM WORLD with the same color value. In addition to being safer than

the �rst approach described above, the new communicator is created with just one MPI function call.

The following FORTRAN code fragment illustrates howMDA Init builds the MDARUN GROUP COMM

communicator. The code extracts my group number and my local rank from the group de�nition data arrays

and uses them as the color and \key" values in the MPI Comm split routine. The local rank is the rank

of the current process in its group. The key value is used to �x the rank of the current process in the new

communicator. The use of both the color and key values is shown in the following code fragment:

my_color = my_group_number

my_key = my_local_rank

Call MPI_Comm_split(MPI_COMM_WORLD, my_color, my_key, MDARUN_GROUP_COMM, ierr)

In the MDARUN software, this new group intracommunicator is called MDARUN GROUP COMM. Each

process will have available a communicator named MDARUN GROUP COMM. However, each instance of

MDARUN GROUP COMM is distinct to a unique group of processes. Each process in a group will have

a local rank inside the MDARUN GROUP COMM communicator in the range of zero to the number of

processes in the group minus one. The group leader is taken to be the process with local rank zero in

MDARUN GROUP COMM. A communicator with the same name as the group communicator constructed

by the MPIRUN package, MPIRUN APP COMM, is also constructed using the MPI Comm dup function.

This communicator is provided by MDARUN to minimize the recoding required to move from the MPIRUN

software to MDARUN.

The new group communicators are illustrated in Figure 2 for an application with two instances each of

executables a.out and b.out.

3.3 CREATE THE GROUP INTERCOMMUNICATORS

The next step is to create an intercommunicator between the individual groups. This is ac-

complished by calling MPI Intercomm create using the unique group communicator for each group

(MDARUN GROUP COMM or MPIRUN APP COMM), MPI COMM WORLD, and the global rank in

MPI COMM WORLD of the leader or �rst process in the remote (other) group. For multiple groups this

requires that each process perform multiple calls to MPI Intercomm create if intercommunication between

some or all of the groups is desired. The following FORTRAN code fragment illustrates a typical call to

MPI Intercomm create:

5

remote_rank = 20

Call MPI_Intercomm_create(MDARUN_GROUP_COMM, 0, MPI_COMM_WORLD,

remote_rank, tag, INTERCOMM, ierr)

In this example, the new group communicator, MDARUN GROUP COMM, will be used to create a

new intercommunicator (INTERCOMM) with the group whose group leader has a global rank of 20 in

MPI COMM WORLD.

As illustrated in the previous example, each call to MPI Intercomm create requires that the user sup-

ply the rank of the leader of the remote group in some \bridge" communicator which the processes in

both the local and remote groups are a member. The bridge communicator is almost always taken to be

MPI COMM WORLD. Therefore, the user must keep track of the global ranks inside MPI COMM WORLD

of the group leaders. Although this information is generated by the MDA Init routine, the user is forced to

revert to thinking in terms of MPI COMM WORLD and the global ranks of processes.

The MDARUN software provides a wrapper routine,MDA Intergroup comm, that simpli�es the creation of

the intercommunicator by hiding the call to MPI Intercomm create from the user. MDA Intergroup comm

requires only the remote group's group number and a \safe" tag as argument list input and returns the

new communicator. The calculation of the appropriate global rank used in MPI Intercomm create is

done inside MDA Intergroup comm and is hidden from the user. Using MDA Intergroup comm in place

of MPI Intercomm create allows the user to de�ne the intercommunicator in terms of the individual groups.

Further details on using MDA Intergroup comm are given in [1].

The interaction of the group intercommunicators is shown in Figure 3. In each group, the process with

local rank zero is the group leader.

4 USING THE GROUP INTERCOMMUNICATOR IN MPI FUNCTIONS

Once the intergroup communicator is de�ned, it can be used in MPI send and receive functions in place of

the global MPI COMM WORLD communicator to transmit data to and from members of di�erent groups.

For example, the following call to the FORTRAN version of theMPI Isend function can be used to send data

from the current process to a process with local rank 2 in group 2. We will assume an intercommunicator

called TO GROUP TWO was created by the procedure outlined in the previous sections.

Call MPI_Isend (sbuf, nbuf, MPI_DOUBLE_PRECISION, 2, mytag, TO_GROUP_TWO,

ireq, ierr)

This is identical to an equivalent call to MPI Isend using MPI COMM WORLD except for the use of the

TO GROUP TWO communicator instead of MPI COMM WORLD and the local rank 2 instead of the

equivalent global rank.

5 BUILDING INTERCOMMUNICATORS WITH MDARUN SOFTWARE

The following code fragments illustrate how easy it is to de�ne the application groups and build the

intercommunicators for a multidisciplinary application using the MDARUN software. The user adds the

following calls to all applications:

6

FORTRAN:

no_read=0

md_unit=7

Open(md_unit,file='my_data_file', STATUS='Unknown')

Call MDA_Init(no_read, md_unit)

.

.

.

comm_tag=0

Do n=0,mdarun_num_groups-1

Call MDA_Intergroup_comm(n,comm_tag, INTERCOMM(n))

End Do

C:

no_read=0;

md_unit=fopen("my_data_file","r");

MDA_Init(no_read, md_unit);

.

.

.

comm_tag=0;

for(n=0;n<=(mdarun_num_groups-1);n++)

MDA_Intergroup_comm(n,comm_tag, &INTERCOMM[n]);

This code will create an array of intercommunicators for all of the application groups. The local group

communicator, MDARUN GROUP COMM, is returned when the group number n is the same as the group

number of the local process. The variable no read tells MDA Init whether or not to read in the required

initialization data. Setting no read equal to one indicates that the required data will be de�ned by the user

prior to the call to MDA Init.

6 STARTING MULTIDISCIPLINARY JOBS ON THE ERDC MSRC

PARALLEL SYSTEMS

The software and procedures described in this report for creating multidisciplinary applications have been

tested on the ERDC MSRC SGI/CRAY Origin2000 and IBM SP systems. The commands used on these

systems to start MPI jobs support loading multiple copies of di�erent applications from the same command

line. The commands for doing this are di�erent on the two architectures. For example, on the SGI/CRAY

Origin2000, the mpirun command can be used to start two instances each of applications a.out and b.out.

mpirun -np 2 a.out : -np 2 b.out

A similar capability exists for the IBM poe command and its Portable Batch System (PBS) equivalent pbspoe.

Details on using both mpirun and poe/pbspoe to start multidisciplinary applications and related issues are

given in [1].

7

7 CHSSI MULTIDISCIPLINARY CODE IMPLEMENTATION USING

MDARUN

This section describes how MDARUN is being used to support the CHSSI multidisciplinary code develop-

ment described in [5]. The goal of the CHSSI EQM 1. project is to link two Computational Fluid Dynamics

codes which use di�erent solution algorithms and grid systems to solve the incompressible, Navier-Stokes

equations for uid ow. The �rst code, PAR3D, uses a �nite volume discretization on structured hexahedral

grid systems. The second code, GLS3D, uses a Galerkin Least Squares �nite element solution technique

on unstructured tetrahedral meshes. PAR3D is written in FORTRAN 77 and GLS3D is written in C. The

multidisciplinary application being developed from these two codes will utilize the strengths of both codes

to provide a coupled simulation capability for hydraulic ows in rivers or around ocean coastlines where the

boundaries of the computational domains may be highly jagged and irregular. The unstructured tetrahedral

mesh system is more capable of handling the irregular mesh topology. On the other hand, �nite volume codes

such as PAR3D are more cost e�ective and, in general, provide better local conservation of ow quantities

than �nite element codes. By coupling the two codes, the strengths of both solution techniques can be

utilized.

The initial implementation of the coupled PAR3D/GLS3D application used the MPIRUN package de-

scribed in [3]. The MPIRUN software was used to form an intercommunicator between the two codes. This

enabled the two codes to exchange ow quantities such as velocities and pressures along the interfaces of

the computational domains of each code. As stated in previous sections of this report, the MPIRUN soft-

ware has proven di�cult to maintain across the di�erent parallel system architectures at the ERDC MSRC.

The CHSSI code developers, Drs. Robert Bernard and Charlie Berger of the ERDC Coastal Hydraulics

Laboratory, needed a software package that they could implement directly into their codes that was easily

maintained and transportable across several systems. These requirements motivated the development of the

MDARUN package.

The MDARUN package has been used to replace the MPIRUN software and data in the PAR3D code.

Implementation into the GLS3D code is underway. In PAR3D, the modi�cations consisted of replacing the

call toMPIRUN INIT with a call toMDA Init and replacing the MPIRUN APP COMM communicator and

MPIRUN APP LEADERS array with their MDARUN equivalents. The modi�ed PAR3D code was tested

by starting two groups of PAR3D applications and comparing the results with the MPIRUN version of the

code. The MDARUN version of PAR3D ran without incident on the ERDC MSRC Origin2000 system.

8 CONCLUDING REMARKS

This report has outlined a procedure for using MPI to create multidisciplinary applications. In addition,

the main routines of a small software package called MDARUN which is designed to reduce the amount of

work required to implement a multidisciplinary application from legacy codes were introduced. The new

software builds on the MPI group concept and provides simple interfaces to the underlying MPI routines

required to build multidisciplinary applications. It is hoped that the information provided in this report and

the MDARUN software described in the accompanying report will enable ERDC MSRC users developing

multidisciplinary applications to reduce the amount of time required to develop their applications.

References

[1] Weed, R., \MDARUN - A Package of Software for Creating Multidisciplinary Applications with MPI,"

ERDC MSRC PET TR-00-02, August, 1999.

[2] Snir, M., et al., MPI - The Complete Reference, MIT Press, 1996.

8

[3] Fineberg, S., \Implementing Multi-disciplinary and Multi-zonal Applications Using MPI," Report No.

NAS-95-003, NASA Ames Research Center, January, 1995.

[4] Goodwin, S., Weed, R., Sankar, L., and Raj, P., \Towards Cost-E�ective Aeroelastic Analysis on

Advanced Parallel Computing Systems," AIAA Paper No. 97-0646, Reno, Nevada, January 6-10, 1997.

[5] Bernard, R., \Structured-Unstructured Modeling," CHSSI EQM 1,

http://www.hpcmo.hpc.mil/Htdocs/CTAs/index.html, 1999.

9

